Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 33-42, 2022.
Article in English | WPRIM | ID: wpr-929234

ABSTRACT

Ubiquitin-proteasome system (UPS) plays an important role in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). The discovery of UPS activators for anti-neurodegenerative diseases is becoming increasingly important. In this study, we aimed to identify potential UPS activators using the high-throughput screening method with the high-content fluorescence imaging system and validate the neuroprotective effect in the cell models of AD. At first, stable YFP-CL1 HT22 cells were successfully constructed by transfecting the YFP-CL1 plasmid into HT22 cells, together with G418 screening. The degradation activity of the test compounds via UPS was monitored by detecting the YFP fluorescence intensity reflected by the ubiquitin-proteasome degradation signal CL1. By employing the high-content fluorescence imaging system, together with stable YFP-CL1 HT22 cells, the UPS activators were successfully screened from our established TCM library. The representative images were captured and analyzed, and quantification of the YFP fluorescence intensity was performed by flow cytometry. Then, the neuroprotective effect of the UPS activators was investigated in pEGFP-N1-APP (APP), pRK5-EGFP-Tau P301L (Tau P301L), or pRK5-EGFP-Tau (Tau) transiently transfected HT22 cells using fluorescence imaging, flow cytometry, and Western blot. In conclusion, our study established a high-content fluorescence imaging system coupled with stable YFP-CL1 HT22 cells for the high-throughput screening of the UPS activators. Three compounds, namely salvianolic acid A (SAA), salvianolic acid B (SAB), and ellagic acid (EA), were identified to significantly decrease YFP fluorescence intensity, which suggested that these three compounds are UPS activators. The identified UPS activators were demonstrated to clear AD-related proteins, including APP, Tau, and Tau P301L. Therefore, these findings provide a novel insight into the discovery and development of anti-AD drugs.


Subject(s)
Humans , Alzheimer Disease/drug therapy , Neuroprotective Agents , Optical Imaging , Proteasome Endopeptidase Complex , Ubiquitin
2.
Journal of Zhejiang University. Medical sciences ; (6): 396-402, 2021.
Article in English | WPRIM | ID: wpr-888509

ABSTRACT

Proteasome is the eukaryotic organelle responsible for degradation of short-lived proteins and involved in maintaining cellular protein homeostasis. It has been reported that during the occurrence and development of hepatocellular carcinoma (HCC), the regulatory particle subunits of proteasome regulate a series of tumor-related proteins, and proliferation, survival-associated signaling molecules, including PTEN gene, P53, Bcl-2, Bcl-2 interacting mediator of cell death (Bim), cyclin-dependent kinase 4(CDK4), transforming growth factor β receptor (TGFBR), E2F1, growth factor receptor-bound protein 2 (GRB2) . Meanwhile, these subunits regulate some tumor-associated pathway protein, such as signal transducer and activator of transcription 3 (STAT3) and protein kinase B (AKT), inducing their malfunction to promote the occurrence, proliferation, invasion and metastasis of HCC. The core particle subunits are more to perform the degradation of HCC-related proteins, so inhibitors targeting the core particle show a good anti-tumor effect. This review summarizes the current research progress on the regulation and mechanism of proteasome subunits in promoting the occurrence and development .


Subject(s)
Humans , Carcinoma, Hepatocellular , Cell Line, Tumor , Cell Proliferation , Liver Neoplasms , Proteasome Endopeptidase Complex/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction
3.
Chinese Journal of Biotechnology ; (12): 3915-3932, 2021.
Article in Chinese | WPRIM | ID: wpr-921476

ABSTRACT

Targeted protein degradation (TPD) technology facilitates specific and efficient degradation of disease-related proteins through hijacking the two major protein degradation systems in mammalian cells: ubiquitin-proteasome system and lysosome pathway. Compared with traditional small molecule-inhibitors, TPD-based drugs exhibit the characteristics of a broader target spectrum. Compared with techniques interfere with protein expression on the gene and mRNA level, TPD-based drugs are target-specific, efficaciously rapid, and not constrained by post-translational modification of proteins. In the past 20 years, various TPD-based technologies have been developed. Most excitingly, two TPD-based therapeutic drugs have been approved by FDA for phase Ⅰ clinical trials in 2019. Despite of the early stage characteristics and various obstructions of the TPD technology, it could serve as a powerful tool for the development of novel drugs. This review summarizes the advances of different degradation systems based on TPD technologies and their applications in disease therapy. Moreover, the advantages and challenges of various technologies were discussed systematically, with the aim to provide theoretical guidance for further application of TPD technologies in scientific research and drug development.


Subject(s)
Animals , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , Proteins/metabolism , Proteolysis , Technology
4.
Chinese Medical Journal ; (24): 2322-2332, 2021.
Article in English | WPRIM | ID: wpr-921158

ABSTRACT

BACKGROUND@#Age-related macular degeneration (AMD) is the leading cause of vision loss worldwide. However, the mechanisms involved in the development and progression of AMD are poorly delineated. We aimed to explore the critical genes involved in the progression of AMD.@*METHODS@#The differentially expressed genes (DEGs) in AMD retinal pigment epithelial (RPE)/choroid tissues were identified using the microarray datasets GSE99248 and GSE125564, which were downloaded from the gene expression omnibus database. The overlapping DEGs from the two datasets were screened to identify DEG-related biological pathways using gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The hub genes were identified from these DEGs through protein-protein interaction network analyses. The expression levels of hub genes were evaluated by quantitative real-time polymerase chain reaction following the induction of senescence in ARPE-19 with FK866. Following the identification of AMD-related key genes, the potential small molecule compounds targeting the key genes were predicted by PharmacoDB. Finally, a microRNA-gene interaction network was constructed.@*RESULTS@#Microarray analyses identified 174 DEGs in the AMD RPE compared to the healthy RPE samples. These DEGs were primarily enriched in the pathways involved in the regulation of DNA replication, cell cycle, and proteasome-mediated protein polyubiquitination. Among the top ten hub genes, HSP90AA1, CHEK1, PSMA4, PSMD4, and PSMD8 were upregulated in the senescent ARPE-19 cells. Additionally, the drugs targeting HSP90AA1, CHEK1, and PSMA4 were identified. We hypothesize that Hsa-miR-16-5p might target four out of the five key DEGs in the AMD RPE.@*CONCLUSIONS@#Based on our findings, HSP90AA1 is likely to be a central gene controlling the DNA replication and proteasome-mediated polyubiquitination during the RPE senescence observed in the progression of AMD. Targeting HSP90AA1, CHEK1, PSMA4, PSMD4, and/or PSMD8 genes through specific miRNAs or small molecules might potentially alleviate the progression of AMD through attenuating RPE senescence.


Subject(s)
Humans , DNA Replication , Gene Expression Profiling , Gene Ontology , Macular Degeneration/genetics , Proteasome Endopeptidase Complex
5.
West China Journal of Stomatology ; (6): 6-10, 2020.
Article in Chinese | WPRIM | ID: wpr-781353

ABSTRACT

OBJECTIVE@#To construct a PA28γ overexpression cell line and determine its effects after infecting an oral squa-mous cell carcinoma (OSCC) cell line.@*METHODS@#The PA28γ gene was cloned into the pLOV.CMV.cherry.2A.EF1a.PuroR lentiviral vector by polymerase chain reaction (PCR), and PCR and DNA sequencing alignment analysis were used for identification. Then, 293T cells were used to package viral diseases. Infected OSCC cells were used to construct a cell line with stable PA28γ overexpression. Finally, the level of PA28γ expression in the OSCC cell line was detected through Western blot.@*RESULTS@#The successful construction of PA28γ recombinant lentiviral vectors was confirmed by DNA sequencing. The results of immunofluorescence showed that the PA28γ overexpression lentivirus successfully infected the OSCC cells and showed cherry red fluorescence. The results of Western blot demonstrated that the constructed cells with stable PA28γ overexpression significantly increased the expression of PA28γ.@*CONCLUSIONS@#The PA28γ overexpression lentiviral vector can significantly increase its protein expression in OSCC cells. We provide a stable OSCC cell line for further study on the effect of PA28γ in OSCC.


Subject(s)
Humans , Autoantigens , Carcinoma, Squamous Cell , Cell Line, Tumor , Genetic Vectors , Lentivirus , Mouth Neoplasms , Proteasome Endopeptidase Complex , Transfection
6.
Cancer Research and Treatment ; : 80-89, 2019.
Article in English | WPRIM | ID: wpr-719716

ABSTRACT

PURPOSE: In the presence of interferon, proteasome subunits are replaced by their inducible counterparts to form an immunoproteasome (IP) plays a key role in generation of antigenic peptides presented by MHC class I molecules, leading to elicitation of a T cell‒mediated immune response. Although the roles of IP in other cancers, and inflammatory diseases have been extensively studied, its significance in breast cancer is unclear. MATERIALS AND METHODS: We investigated the expression of LMP7, an IP subunit, and its relationship with immune system components in two breast cancer cohorts. RESULTS: In 668 consecutive breast cancer cohort, 40% of tumors showed high level of LMP7 expression, and tumors with high expression of LMP7 had more tumor-infiltrating lymphocytes (TILs) in each subtype of breast cancer. In another cohort of 681 triple-negative breast cancer patients cohort, the expression of LMP7 in tumor cells was significantly correlated with the amount of TILs and the expression of interferon-associated molecules (MxA [p < 0.001] and PKR [p < 0.001]), endoplasmic reticulum stress-associated molecules (PERK [p=0.012], p-eIF2a [p=0.001], and XBP1 [p < 0.001]), and damage-associated molecular patterns (HMGN1 [p < 0.001] and HMGB1 [p < 0.001]). Patients with higher LMP7 expression had better disease-free survival outcomes than those with no or low expression in the positive lymph node metastasis group (p=0.041). CONCLUSION: Close association between the TIL levels and LMP7 expression in breast cancer indicates that better antigen presentation through greater LMP7 expression might be associated with more TILs.


Subject(s)
Humans , Antigen Presentation , Breast Neoplasms , Breast , Cohort Studies , Disease-Free Survival , Endoplasmic Reticulum , HLA Antigens , HMGB1 Protein , Immune System , Interferons , Lymph Nodes , Lymphocytes, Tumor-Infiltrating , Neoplasm Metastasis , Peptides , Proteasome Endopeptidase Complex , Triple Negative Breast Neoplasms
7.
Mem. Inst. Oswaldo Cruz ; 114: e190052, 2019. tab, graf
Article in English | LILACS | ID: biblio-1012678

ABSTRACT

BACKGROUND Biomphalaria glabrata is the major species used for the study of schistosomiasis-related parasite-host relationships, and understanding its gene regulation may aid in this endeavor. The ubiquitin-proteasome system (UPS) performs post-translational regulation in order to maintain cellular protein homeostasis and is related to several mechanisms, including immune responses. OBJECTIVE The aims of this work were to identify and characterise the putative genes and proteins involved in UPS using bioinformatic tools and also their expression on different tissues of B. glabrata. METHODS The putative genes and proteins of UPS in B. glabrata were predicted using BLASTp and as queries reference proteins from model organism. We characterised these putative proteins using PFAM and CDD software describing the conserved domains and active sites. The phylogenetic analysis was performed using ClustalX2 and MEGA5.2. Expression evaluation was performed from 12 snail tissues using RPKM. FINDINGS 119 sequences involved in the UPS in B. glabrata were identified, which 86 have been related to the ubiquitination pathway and 33 to proteasome. In addition, the conserved domains found were associated with the ubiquitin family, UQ_con, HECT, U-box and proteasome. The main active sites were lysine and cysteine residues. Lysines are responsible and the starting point for the formation of polyubiquitin chains, while the cysteine residues of the enzymes are responsible for binding to ubiquitin. The phylogenetic analysis showed an organised distribution between the organisms and the clades of the sequences, corresponding to the tree of life of the animals, for all groups of sequences analysed. The ubiquitin sequence was the only one with a high expression profile found in all libraries, inferring its wide range of performance. MAIN CONCLUSIONS Our results show the presence, conservation and expression profile of the UPS in this mollusk, providing a basis and new knowledge for other studies involving this system. Due to the importance of the UPS and B. glabrata, this work may influence the search for new methodologies for the control of schistosomiasis.


Subject(s)
Humans , Ubiquitin/analysis , Proteasome Endopeptidase Complex , Genome-Wide Association Study/methods , Biomphalaria/parasitology
8.
Journal of Southern Medical University ; (12): 387-393, 2019.
Article in Chinese | WPRIM | ID: wpr-772089

ABSTRACT

OBJECTIVE@#To study the expression of PSMA7 and its effect on proliferation, invasion and migration of gastric cancer and subcutaneous tumorigenesis in nude mice. >and subcutaneous tumorigenesis in nude mice.@*METHODS@#Specimens of tumor tissues and paired adjacent tissues were collected from 60 patients with gastric cancer for detecting the expression levels of PSMA7 using immunohistochemical method. Gastric cancer cell line SGC7901 was transfected with a lentiviral vector to inhibit PSMA7 expression, and the changes in cell proliferation and invasion were observed using cell counting kit-8 (CCK-8), clone formation assay and Transwell assay. A BALB/c mouse model bearing subcutaneous gastric cancer xenograft was established using SGC7901 cells with stable PSMA7 knockdown to assess the effect of low expression of PSMA7 on xenograft growth.@*RESULTS@#Gastric cancer tissues expressed significantly higher levels of PSMA7 than the paired adjacent tissues ( < 0.05). In SGC7901 cells, interference of PSMA7 expression significantly inhibited the cell proliferation and invasion ( < 0.05). In the tumor-bearing BALB/c mice, the xenografts derived from SGC7901 cells with PSMA7 expression interference showed significant growth suppression as compared with the control xenografts ( < 0.05).@*CONCLUSIONS@#PPSMA 7 is overexpressed in gastric cancer tissues, and PSMA7 knockdown inhibits the proliferation, invasion, migration and subcutaneous tumorigenesis of gastric cancer cells in nude mice.


Subject(s)
Animals , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Proteasome Endopeptidase Complex , Metabolism , Stomach Neoplasms
9.
Chinese Journal of Traumatology ; (6): 93-98, 2019.
Article in English | WPRIM | ID: wpr-771633

ABSTRACT

The clinical treatment of joint contracture due to immobilization remains difficult. The pathological changes of muscle tissue caused by immobilization-induced joint contracture include disuse skeletal muscle atrophy and skeletal muscle tissue fibrosis. The proteolytic pathways involved in disuse muscle atrophy include the ubiquitin-proteasome-dependent pathway, caspase system pathway, matrix metalloproteinase pathway, Ca-dependent pathway and autophagy-lysosomal pathway. The important biological processes involved in skeletal muscle fibrosis include intermuscular connective tissue thickening caused by transforming growth factor-β1 and an anaerobic environment within the skeletal muscle leading to the induction of hypoxia-inducible factor-1α. This article reviews the progress made in understanding the pathological processes involved in immobilization-induced muscle contracture and the currently available treatments. Understanding the mechanisms involved in immobilization-induced contracture of muscle tissue should facilitate the development of more effective treatment measures for the different mechanisms in the future.


Subject(s)
Humans , Atrophy , Autophagy , Calcium , Metabolism , Caspases , Metabolism , Connective Tissue , Metabolism , Pathology , Contracture , Metabolism , Pathology , Therapeutics , Fibrosis , Immobilization , Joints , Lysosomes , Metabolism , Matrix Metalloproteinases , Metabolism , Muscle, Skeletal , Metabolism , Pathology , Proteasome Endopeptidase Complex , Metabolism , Proteolysis , Signal Transduction , Physiology , Transforming Growth Factor beta1 , Metabolism , Ubiquitin , Metabolism
10.
International Journal of Stem Cells ; : 463-473, 2019.
Article in English | WPRIM | ID: wpr-785827

ABSTRACT

PSMD10(Gankyrin), a proteasome assembly chaperone, is a widely known oncoprotein which aspects many hall mark properties of cancer. However, except proteasome assembly chaperon function its role in normal cell function remains unknown. To address this issue, we induced PSMD10(Gankyrin) overexpression in HEK293 cells and the resultant large-scale changes in gene expression profile were analyzed. We constituted networks from microarray data of these differentially expressed genes and carried out extensive topological analyses. The overrecurring yet consistent theme that appeared throughout analysis using varied network metrics is that all genes and interactions identified as important would be involved in neurogenesis and neuronal development. Intrigued we tested the possibility that PSMD10(Gankyrin) may be strongly associated with cell fate decisions that commit neural stem cells to differentiate into neurons. Overexpression of PSMD10(Gankyrin) in human neural progenitor cells facilitated neuronal differentiation via β-catenin Ngn1 pathway. Here for the first time we provide preliminary and yet compelling experimental evidence for the involvement of a potential oncoprotein – PSMD10(Gankyrin), in neuronal differentiation.


Subject(s)
Humans , HEK293 Cells , Neural Stem Cells , Neurogenesis , Neurons , Proteasome Endopeptidase Complex , Stem Cells , Transcriptome
11.
Laboratory Animal Research ; : 172-179, 2019.
Article in English | WPRIM | ID: wpr-786406

ABSTRACT

Glutamate leads to neuronal cell damage by generating neurotoxicity during brain development. The objective of this study is to identify proteins that differently expressed by glutamate treatment in neonatal cerebral cortex. Sprague-Dawley rat pups (post-natal day 7) were intraperitoneally injected with vehicle or glutamate (10 mg/kg). Brain tissues were isolated 4 h after drug treatment and fixed for morphological study. Moreover, cerebral cortices were collected for protein study. Two-dimensional gel electrophoresis and mass spectrometry were carried out to identify specific proteins. We observed severe histopathological changes in glutamate-exposed cerebral cortex. We identified various proteins that differentially expressed by glutamate exposure. Identified proteins were thioredoxin, peroxiredoxin 5, ubiquitin carboxy-terminal hydrolase L1, proteasome subunit alpha proteins, isocitrate dehydrogenase, and heat shock protein 60. Heat shock protein 60 was increased in glutamate exposed condition. However, other proteins were decreased in glutamate-treated animals. These proteins are related to anti-oxidant, protein degradation, metabolism, signal transduction, and anti-apoptotic function. Thus, our findings can suggest that glutamate leads to neonatal cerebral cortex damage by regulation of specific proteins that mediated with various functions.


Subject(s)
Animals , Humans , Infant, Newborn , Rats , Brain , Cerebral Cortex , Chaperonin 60 , Electrophoresis, Gel, Two-Dimensional , Glutamic Acid , Isocitrate Dehydrogenase , Mass Spectrometry , Metabolism , Neurons , Peroxiredoxins , Proteasome Endopeptidase Complex , Proteolysis , Proteomics , Rats, Sprague-Dawley , Signal Transduction , Thioredoxins , Ubiquitin Thiolesterase
12.
Arq. neuropsiquiatr ; 76(12): 831-839, Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-983856

ABSTRACT

ABSTRACT Considering aging as a phenomenon in which there is a decline in essential processes for cell survival, we investigated the autophagic and proteasome pathways in three different groups: young, older and oldest old male adults. The expression profile of autophagic pathway-related genes was carried out in peripheral blood, and the proteasome quantification was performed in plasma. No significant changes were found in plasma proteasome concentrations or in correlations between proteasome concentrations and ages. However, some autophagy- and/or apoptosis-related genes were differentially expressed. In addition, the network and enrichment analysis showed an interaction between four of the five differentially expressed genes and an association of these genes with the transcriptional process. Considering that the oldest old individuals maintained both the expression of genes linked to the autophagic machinery, and the proteasome levels, when compared with the older group, we concluded that these factors could be considered crucial for successful aging.


RESUMO Considerando o envelhecimento como um fenômeno em que há um declínio nos processos essenciais a sobrevivência celular, investigamos as vias autofágica e proteassômica em três grupos: jovens, idosos e longevos. O perfil de expressão dos genes relacionados à via autofágica foi analisado em sangue periférico, e a quantificação do proteassoma realizada em plasma. Não foram encontradas alterações significativas nas concentrações plasmáticas de proteassoma ou na correlação entre as concentrações de proteassoma e as idades. No entanto, alguns genes relacionados a autofagia e / ou apoptose foram expressos diferencialmente. Além disso, as análises de rede e de enriquecimento mostraram uma interação entre quatro dos cinco genes diferencialmente expressos e a associação desses ao processo transcricional. Considerando que os indivíduos longevos mantiveram tanto a expressão de genes ligados à maquinaria autofágica, quanto os níveis de proteassoma quando comparados aos idosos, concluímos que esses fatores poderiam ser considerados cruciais para o envelhecimento bem-sucedido.


Subject(s)
Humans , Male , Adult , Middle Aged , Aged , Aged, 80 and over , Young Adult , Autophagy/genetics , Aging/genetics , Aging/metabolism , Longevity/genetics , Autophagy/physiology , Brazil , Gene Expression Regulation , Apoptosis/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Longevity/physiology
13.
Journal of Cancer Prevention ; : 153-161, 2018.
Article in English | WPRIM | ID: wpr-740116

ABSTRACT

Imbalance of protein homeostasis (proteostasis) is known to cause cellular malfunction, cell death, and diseases. Elaborate regulation of protein synthesis and degradation is one of the important processes in maintaining normal cellular functions. Protein degradation pathways in eukaryotes are largely divided into proteasome-mediated degradation and lysosome-mediated degradation. Proteasome is a multisubunit complex that selectively degrades 80% to 90% of cellular proteins. Proteasome-mediated degradation can be divided into 26S proteasome (20S proteasome + 19S regulatory particle) and free 20S proteasome degradation. In 1980, it was discovered that during ubiquitination process, wherein ubiquitin binds to a substrate protein in an ATP-dependent manner, ubiquitin acts as a degrading signal to degrade the substrate protein via proteasome. Conversely, 20S proteasome degrades the substrate protein without using ATP or ubiquitin because it recognizes the oxidized and structurally modified hydrophobic patch of the substrate protein. To date, most studies have focused on protein degradation via 26S proteasome. This review describes the 26S/20S proteasomal pathway of protein degradation and discusses the potential of proteasome as therapeutic targets for cancer treatment as well as against diseases caused by abnormalities in the proteolytic system.


Subject(s)
Adenosine Triphosphate , Cell Death , Eukaryota , Homeostasis , Oxidative Stress , Proteasome Endopeptidase Complex , Proteolysis , Ubiquitin , Ubiquitination
14.
Soonchunhyang Medical Science ; : 47-54, 2018.
Article in Korean | WPRIM | ID: wpr-715114

ABSTRACT

OBJECTIVE: The study was performed to establish the purification processes of both 26S and 20S proteasomes, also to investigate the inhibitory properties and patterns of two different proteasome inhibitors on the isolated proteasomes. METHODS: The 26S and 20S proteasomes were purified respectively using liquid chromatographies and glycerol density gradient fractionation. The inhibitory patterns and kinetics of two different proteasome inhibitors were investigated using purified 26S and 20S proteasomes. RESULTS: The purity of the isolated proteasomes were determined by their biochemical properties and electrophoretic patterns. 3-nitro-4-hydroxy-5-indophenylacetyl-leucyl-leucyl-leucyl-vinylsulfone (Nip-L₃-VS) inhibited exclusively the chymotrypsin-like peptidase activities of the 26S and 20S proteasomes. On the other hand, dansyl-phenylyl-leucyl-boronic acid (DFLB) inhibited chymotrpsin-like, trypsin-like, and caspase-like peptidase activities of both proteasomes with different sensitivity. CONCLUSION: The proposed purification method provides efficient separation and isolation of the 26S and 20S proteasomes. Nip-L₃-VS and DFLB were shown to have different inhibitory effects and kinetics on the peptidase activities of the isolated proteasomes. These studies are suggested to be applied to the researches on proteasome inhibitors as therapeutic reagents for many related diseases.


Subject(s)
Bortezomib , Chromatography , Glycerol , Hand , Indicators and Reagents , Kinetics , Methods , Proteasome Endopeptidase Complex , Proteasome Inhibitors
15.
Rev. Soc. Bras. Med. Trop ; 50(1): 99-103, Jan.-Feb. 2017. graf
Article in English | LILACS | ID: biblio-1041391

ABSTRACT

Abstract: INTRODUCTION: Infection with all serotypes of dengue virus (DV) results in augmented antigen presentation by MHC class I molecules. However, the upregulation of immunoproteasome subunits only results from infection with two serotypes. This study aims to elucidate changes in the expression of immunoproteasome subunits resulting from infection with DV, particularly DV serotype 2 (DV2). METHODS: HepG2 cells were grown in various culture milieu. Total cellular RNA and proteins were extracted and quantified. RESULTS: Results demonstrated sequestration of immunoproteasome subunits LMP2 and LMP7 in DV2-infected cells. CONCLUSIONS: This study provides insights into the mechanisms underlying immune evasion by DV.


Subject(s)
Humans , Dengue Virus/metabolism , Proteasome Endopeptidase Complex/metabolism , Gene Expression Regulation , Protein Subunits , Dengue Virus/classification , Hep G2 Cells , Serogroup
16.
Singapore medical journal ; : 55-71, 2017.
Article in English | WPRIM | ID: wpr-304130

ABSTRACT

Multiple myeloma (MM) is an incurable plasma cell neoplasm with an incidence of 100 patients per year in Singapore. Major advances have been made in the diagnosis, risk stratification and treatment of MM in the recent past. The reclassification of a subset of patients with smouldering MM, based on high-risk biomarkers, and the development of the revised international staging system are among the key new developments in diagnosis and staging. The use of novel agent-based treatment has resulted in significant improvements in the survival and quality of life of many patients with MM. Determining the optimal use of proteasome inhibitors, immunomodulators and, more recently, monoclonal antibodies is an area of ongoing investigation. In this guideline, we aim to provide an overview of the management of MM, incorporating the latest developments in diagnosis and treatment.


Subject(s)
Aged , Female , Humans , Male , Middle Aged , Antibodies, Monoclonal , Chemistry , Biomarkers, Tumor , Medical Oncology , Reference Standards , Multiple Myeloma , Diagnosis , Therapeutics , Practice Guidelines as Topic , Proteasome Endopeptidase Complex , Quality of Life , Risk , Singapore , Societies, Medical , Stem Cell Transplantation , Transplantation Conditioning
17.
Protein & Cell ; (12): 255-272, 2017.
Article in English | WPRIM | ID: wpr-757012

ABSTRACT

The 26S proteasome at the center of the ubiquitin-proteasome system (UPS) is essential for virtually all cellular processes of eukaryotes. A common misconception about the proteasome is that, once made, it remains as a static and uniform complex with spontaneous and constitutive activity for protein degradation. Recent discoveries have provided compelling evidence to support the exact opposite insomuch as the 26S proteasome undergoes dynamic and reversible phosphorylation under a variety of physiopathological conditions. In this review, we summarize the history and current understanding of proteasome phosphorylation, and advocate the idea of targeting proteasome kinases/phosphatases as a new strategy for clinical interventions of several human diseases.


Subject(s)
Animals , Humans , Phosphoprotein Phosphatases , Genetics , Metabolism , Phosphorylation , Genetics , Proteasome Endopeptidase Complex , Genetics , Metabolism , Protein Kinases , Genetics , Metabolism
18.
Protein & Cell ; (12): 686-695, 2017.
Article in English | WPRIM | ID: wpr-756972

ABSTRACT

Inflammatory bowel disease (IBD) is an intestinal immune-dysfunctional disease worldwide whose prevalence increasing in Asia including China. It is a chronic disease of the gastrointestinal tract with unknown cause. Exosomes are small vesicles in various body fluids. They have diameters of 40-120 nm, and one of their functions is long-distance transfer of various substances. In this study, we investigated the contents of salivary exosomes in patients with IBD and in healthy controls to explore a new biomarker in patients with IBD. In this study, whole saliva was obtained from patients with IBD (ulcerative colitis (UC), n = 37; Crohn's disease (CD), n = 11) and apparently healthy individuals (HC, n = 10). Salivary exosomes were extracted from samples, and the proteins within the exosomes were identified by liquid chromatograph-mass spectrometer (LC-MS/MS). The results showed that more than 2000 proteins were detected in salivary exosomes from patients with IBD. Through gene ontology analysis, we found that proteasome subunit alpha type 7 (PSMA7) showed especially marked differences between patients with IBD and the healthy controls, in that its expression level was much higher in the CD and UC groups. This exosomal protein is related to proteasome activity and inflammatory responses. So we conclude that in this research, salivary exosomal PSMA7 was present at high levels in salivary exosomes from subjects with IBD. It can be a very promising biomarker to release the patients from the pain of colonoscopy.


Subject(s)
Animals , Female , Humans , Male , Biomarkers , Metabolism , Inflammatory Bowel Diseases , Metabolism , Proteasome Endopeptidase Complex , Metabolism , Salivary Proteins and Peptides , Metabolism
19.
Acta Physiologica Sinica ; (6): 261-266, 2017.
Article in English | WPRIM | ID: wpr-348276

ABSTRACT

Iron accumulation in the brain is associated with the pathogenesis of Parkinson's disease (PD). Misexpression of some iron transport and storage proteins is related to iron dyshomeostasis. Iron regulatory proteins (IRPs) including IRP1 and IRP2 are cytosolic proteins that play important roles in maintaining cellular iron homeostasis. F-box and leucine-rich repeat protein 5 (FBXL5) is involved in the regulation of iron metabolism by degrading IRP2 through the ubiquitin-proteasome system. Nitric oxide (NO) enhances the binding activity of IRP1, but its effect on IRP2 is ambiguous. Therefore, in the present study, we aim to determine whether sodium nitroprusside (SNP), a NO donor, regulates FBXL5 and IRP2 expression in cultured SH-SY5Y cells. MTT assay revealed that treatment of SNP attenuated the cell viability in a dose-dependent manner. Flow cytometry test showed that 100 and 300 μmol/L SNP administration significantly reduced the mitochondrial membrane potential by 45% and 60%, respectively. Moreover, Western blotting analysis demonstrated that 300 μmol/L SNP significantly increased FBXL5 expression by about 39%, whereas the expression of IRP2 was decreased by 46%, correspondingly. These findings provide evidence that SNP could induce mitochondrial dysfunction, enhance FBXL5 expression and decrease IRP2 expression in SH-SY5Y cells.


Subject(s)
Humans , Cell Line , Cell Survival , F-Box Proteins , Metabolism , Homeostasis , Iron Regulatory Protein 2 , Metabolism , Nitric Oxide , Metabolism , Nitroprusside , Pharmacology , Proteasome Endopeptidase Complex , Ubiquitin , Metabolism , Ubiquitin-Protein Ligase Complexes , Metabolism
20.
Experimental & Molecular Medicine ; : e287-2017.
Article in English | WPRIM | ID: wpr-85458

ABSTRACT

Proteasomes are the primary degradation machinery for oxidatively damaged proteins that compose a class of misfolded protein substrates. Cellular levels of reactive oxygen species increase with age and this cellular propensity is particularly harmful when combined with the age-associated development of various human disorders including cancer, neurodegenerative disease and muscle atrophy. Proteasome activity is reportedly downregulated in these disease conditions. Herein, we report that docosahexaenoic acid (DHA), a major dietary omega-3 polyunsaturated fatty acid, mediates intermolecular protein cross-linkages through oxidation, and the resulting protein aggregates potently reduce proteasomal activity both in vitro and in cultured cells. Cellular models overexpressing aggregation-prone proteins such as tau showed significantly elevated levels of tau aggregates and total ubiquitin conjugates in the presence of DHA, thereby reflecting suppressed proteasome activity. Strong synergetic cytotoxicity was observed when the cells overexpressing tau were simultaneously treated with DHA. Antioxidant N-acetyl cysteine significantly desensitized the cells to DHA-induced oxidative stress. DHA significantly delayed the proteasomal degradation of muscle proteins in a cellular atrophy model. Thus, the results of our study identified DHA as a potent inducer of cellular protein aggregates that inhibit proteasome activity and potentially delay systemic muscle protein degradation in certain pathologic conditions.


Subject(s)
Humans , Atrophy , Cells, Cultured , Cysteine , In Vitro Techniques , Muscle Fibers, Skeletal , Muscle Proteins , Muscular Atrophy , Neurodegenerative Diseases , Oxidative Stress , Proteasome Endopeptidase Complex , Protein Aggregates , Reactive Oxygen Species , Ubiquitin
SELECTION OF CITATIONS
SEARCH DETAIL